

Klimaschutz ist "Chef-Sache"

Die Auswirkungen des Klimawandels sind für die Menschen spürbar. Vielen macht das Angst. Panikmache sei der falsche Weg, sagt Oberbürgermeister Andreas Hesky beim Bürgertreff am Abend des Feiertags Heilige Drei Könige. Er plä-

greifen – und sich als Kommune dafür einzusetzen. In Bezug auf die Windkraft kreiert Hesky sodiert dafür, Klimaneutralität als Chance zu be- gar ein neues Stoßgebet. Seine Neujahrsanspra-

che enthält auch einen weitgehend positiven Blick auf die Gartenschau. Foto: Habermann Seite B 1

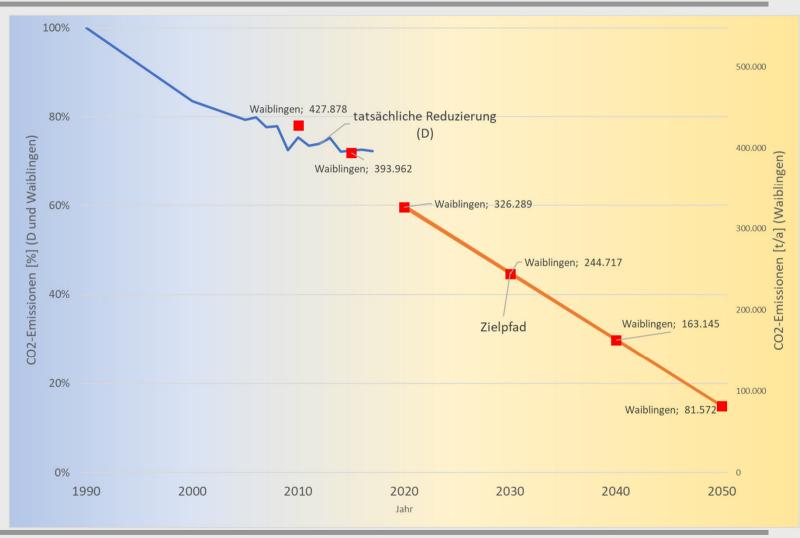
Bisher definierte Ziele von Waiblingen

Verringerung der CO₂-Emissionen um 10% alle 5 Jahre. (Klimabündnis)

Reduktion der CO₂-Emissionen bis 2030 um mindestens 50% gegenüber 2005. (STEP 2030)

Anteil Erneuerbarer Energien beim Wärmeverbrauch 20% und beim Stromverbrauch 40% bis 2030. (STEP 2030)

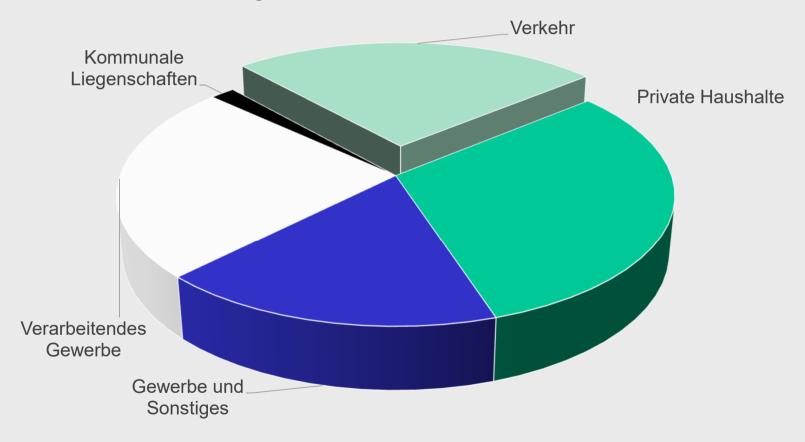
Weitgehend klimaneutrale Verwaltung bis 2040. (Klimaschutzpakt)



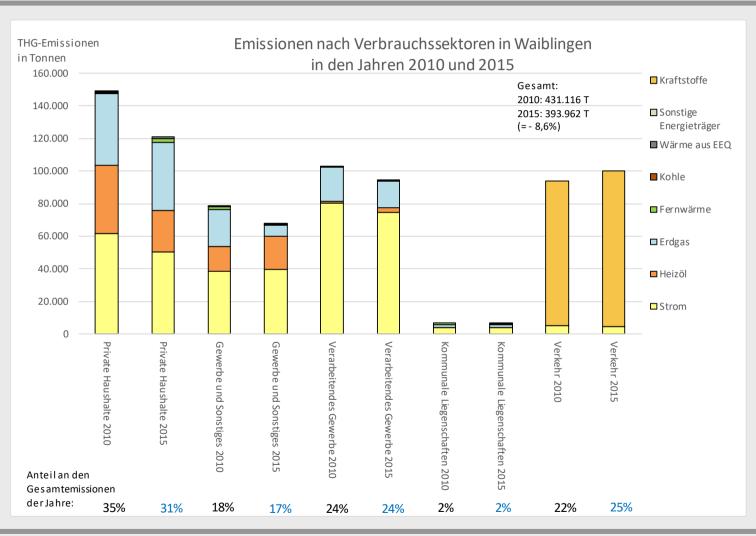
Vorbildwirkung der öffentlichen Hand beim Klimaschutz. (Klimaschutzpakt und Klimabündnis)

→ Klimaneutralität noch nicht als Gesamtziel formal definiert

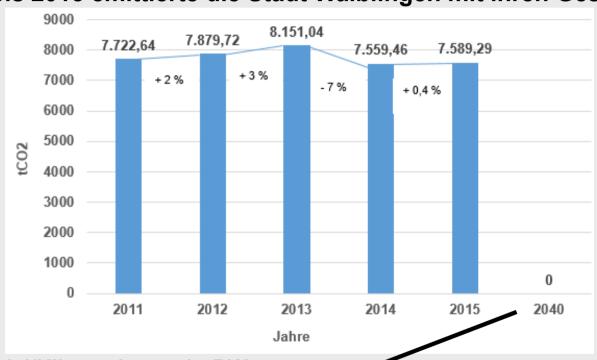
CO2 Emissionen Anspruch und Wirklichkeit



Fachbereich Bauen und Umwelt

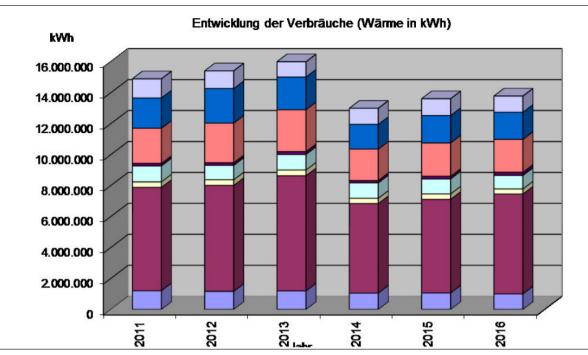

Treibhausgasemissionen in Waiblingen

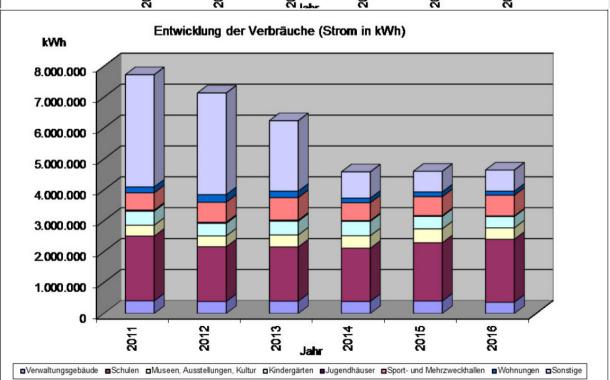
Aufteilung der Verursacher an THG-Emissionen


CO₂ Bilanz Waiblingen 2020, 2015,...

CO2-Emissionen Stadtverwaltung

2011 bis 2015 emittierte die Stadt Waiblingen mit ihren Gesellschaften..


Klimaziel/Klimaschutzpakt BW:


CO2-neutrale Kommune bis 2040, wie erreichen wir null?

- 303 tCO2 Einsparung pro Jahr notwendig
- Dies entspricht jährl. 4 % der CO2-Emissionen von 2015

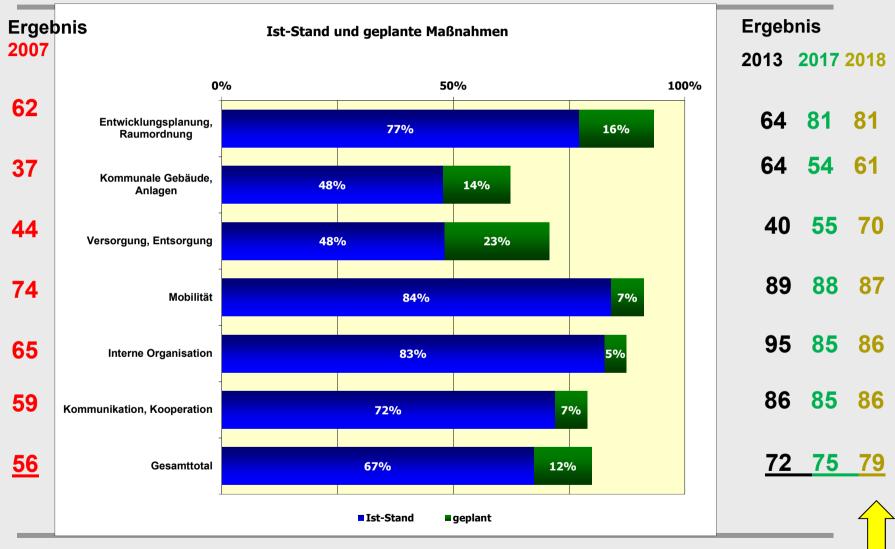
Städtische Liegenschaften

Instrumente zur Zielerreichung european energy award,...

WAIBLINGEN

Vorbildprojekte:

- Klimaschutzziele im Stadtentwicklungsplan
- Unterzeichner des Klimaschutzpaktes
- CO₂-Bilanz
- Stadtwerke als innovativer Klimaschutzpartner
- Klimaneutrales Baugebiet
- Solarauflagen in Neubaugebieten
- Förderprogramm Klimaschutz
- Klimaanpassungsstrategien
- Nachhaltige Mobilität
- 100 % Ökostrom durch Stadtwerke Waiblingen



eea-Ergebnis 2007/2010/2013/ 2017/ 2018

Zielerreichung durch...

Unsere Schule

Unser Auto

Unser Baugebiet

Unsere Stadtwerke

Unser Kraftwerk

Unsere Förderung

Unsere Heizung

Unser Strom

Unser Freibad

Klimaschutz Instrumente WN

- STEP, VEP
- Eea Handlungskatalog
- Stadtwerke
- Solaraufbauverpflichtung
- Klimaneutrale Baugebiete
- Förderprogramm Klimaschutz
- Energiemanagement
- Energieagentur
- Klimaschutzteilkonzept erneuerbare Energien und integrierte Wärmenutzung
-

KOMBINIERTES KLIMASCHUTZTEILKONZEPT

ERNEUERBARE ENERGIEN
INTEGRIERTE WÄRMENUTZUNG
Energienutzungsplan der
Stadt Waiblingen

Kurzversion

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages

Förderung:

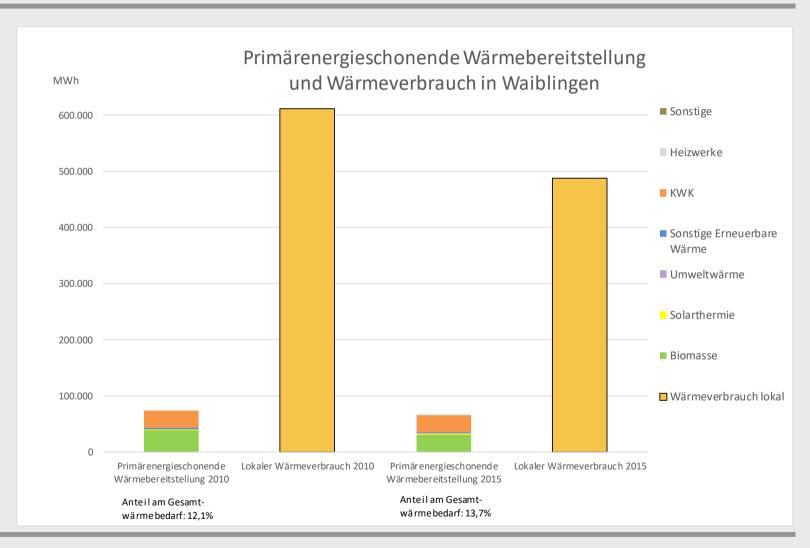
Das diesem Bericht zugrundelliegende Projekt wurde mit Mitteln des Bundesministeriums für Umweit, Naturschutz und Reaktorsicherheit im Förderbereich der nationalen Klimaschutzinitiative unter den Förderkennzeichen 03K07380 gefördert.

POTENZIALE WÄRMENUTZUNG

Der Gebäudesektor ist mit über 400 GWh der größte Energieverbraucher. Mit Wärmeschutzmaßnahmen können davon bis zu 55% eingespart werden, falls ambitioniert saniert wird.

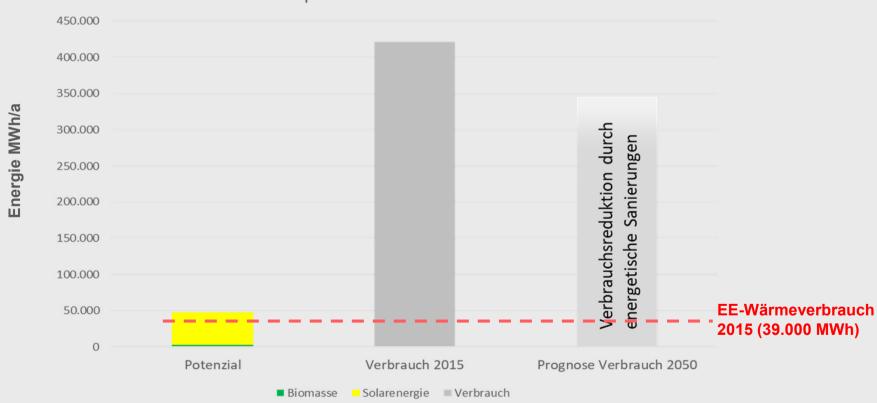
In der Wärmeversorgung bestehen Potenziale bezüglich:

- Effizienz = Sanierung von Heizungsanlagen
- Umstellung auf Energieträger mit weniger CO₂-Ausstoß

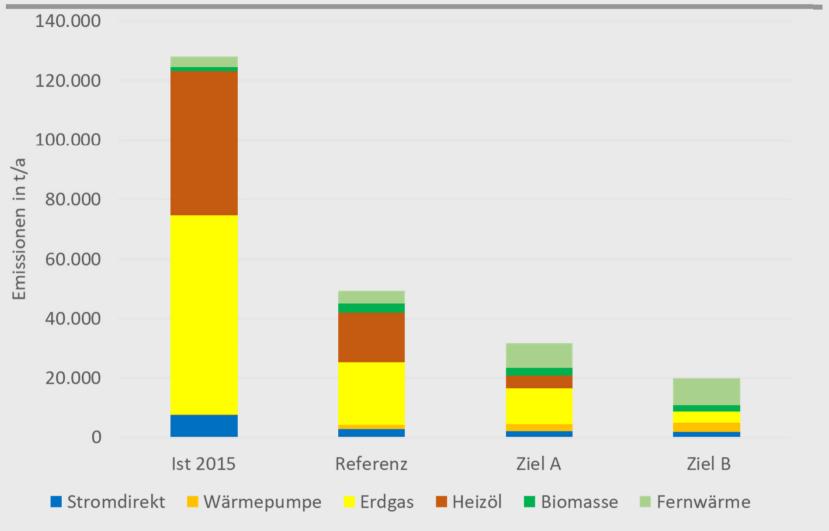


- Nutzung Erneuerbarer Energien

Der Ausbau der <u>Fernwärme</u> ermöglicht es, alle drei oben genannten Strategien rascher durchzuführen.


Wärme

Fachbereich Bauen und Umwelt

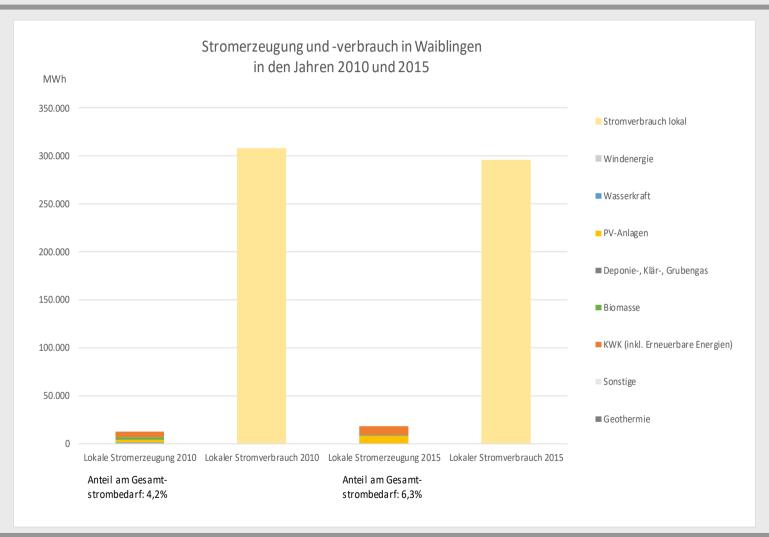


Entwicklung der CO2-Emissionen im Wärmebereich

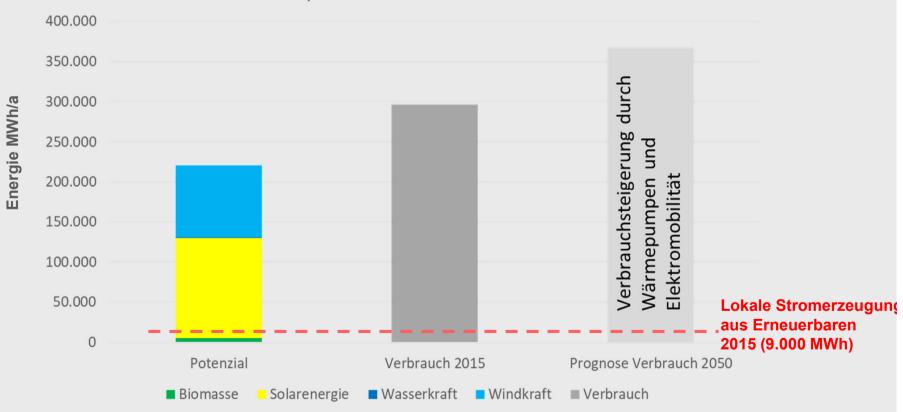


Wesentliche Potenziale auf Waiblinger Gebiet im Bereich der Sonnenenergienutzung.

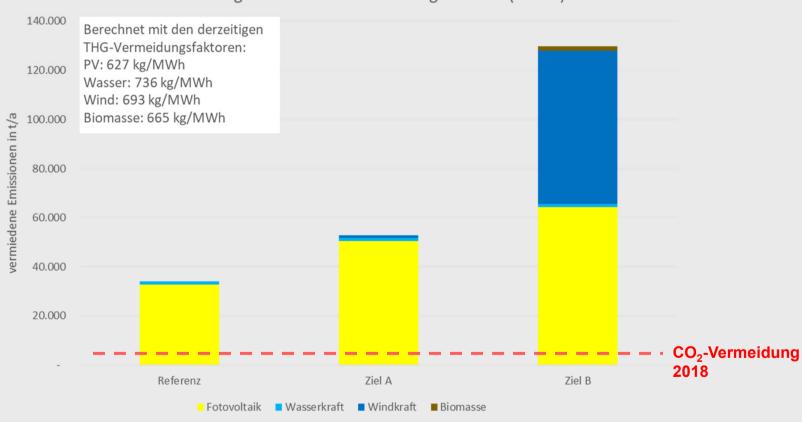
Rund 900.000 m² Dachflächen auf 10.000 Gebäuden sind für die Solarenergienutzung sehr gut oder gut geeignet. Bisher werden erst rund 9% dieses Potenzials genutzt. Ca. 3% des Strombedarfs aus PV WN


Freiflächenanlagen an den Bahnlinien können weitere 7% beitragen.

Über Solarwärmenutzung an Wohngebäuden können 17% des Wärmebedarfs mit Sonnenkollektoren gedeckt werden.


Strom

Fachbereich Bauen und Umwelt



Die Windkraftnutzung ist derzeit keine Option, obwohl das Potenzial fast ebenso groß ist, wie das der Solarenergie.

In der Wasserkraftnutzung wird derzeit schon über 60% des Potenzials genutzt. Damit wird jedoch nur 0,3% des Stromverbrauches abgedeckt.

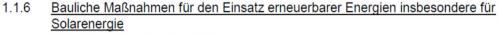
Biomasse deckt derzeit 6,5% des Wärmebedarfs. Eine Steigerung ist nur durch die Nutzung von Reststoffen der Landwirtschaft oder der Landschaftspflege möglich.

Umweltwärme und Geothermie zur Wärmenutzung ist letztendlich in ausreichender Menge vorhanden. Die Nutzung hängt jedoch stark von den Voraussetzungen

PV-Anlagen auf städtischen Gebäuden

- 32 städtische Gebäude mit PV belegt
 ⇒ sie erbringen eine Gesamt-Leistung vor
 - ⇒ sie erbringen eine Gesamt-Leistung von 1MWp davon 0,954 MWp auf vermieteten Dächern

8 Dächer eigen genutzt (81 KWp) (Rathaus, Wolfgang-Zacher- Schule, Staufer – Gymnasium, Kindergarten Berg Bürg, Technischer Betriebshof, Unterführung Bürgerzentrum, Hort Lindenschule, Schillerschule) Aktuell Bau Eigenstromanlagen


 24 Anlagen sind fremdvermietet. Vertragspartner sind teils Privatpersonen, Firmen und die Stadtwerke Waiblingen (9 Anlagen mit 345 KWp).

 Stadtwerke nutzen auch private Dächer mit PV - Leistungen bis 700 kWp/Dach. 19 Anlagen mit 1,25 MWp und 1,32 GWh Ertrag

Solar-Aufbauverpflichtung: B-Plan Festsetzungen

(§ 9 Abs. 1 Nr. 23 b BauGB)

Im gesamten Plangebiet sind bei Hauptgebäuden

- mit Satteldächern die nach Süden bis Südwesten orientierten Dachflächen und
- · die flach geneigten Dächer

gemäß § 9 Abs. 1 Nr. 23 b BauGB zu mind. 50 % mit Solaranlagen zu versehen.

Die Dachflächen von Doppelhäusern und Hausgruppen sind nicht einzeln sondern als Gesamtfläche anzusehen.

Bei flach geneigten Dächern mit Dachflächen kleiner 50 qm müssen keine Solaranlagen aufgebracht werden.

Festsetzungen in Bebauungsplänen nach § 9 Abs. 1 Nr.23 b BauGB

2.4 Bauliche Maßnahmen für den Einsatz erneuerbarer Energien insbesondere für Solarenergie (§ 9 Abs. 1 Nr. 23 b BauGB)

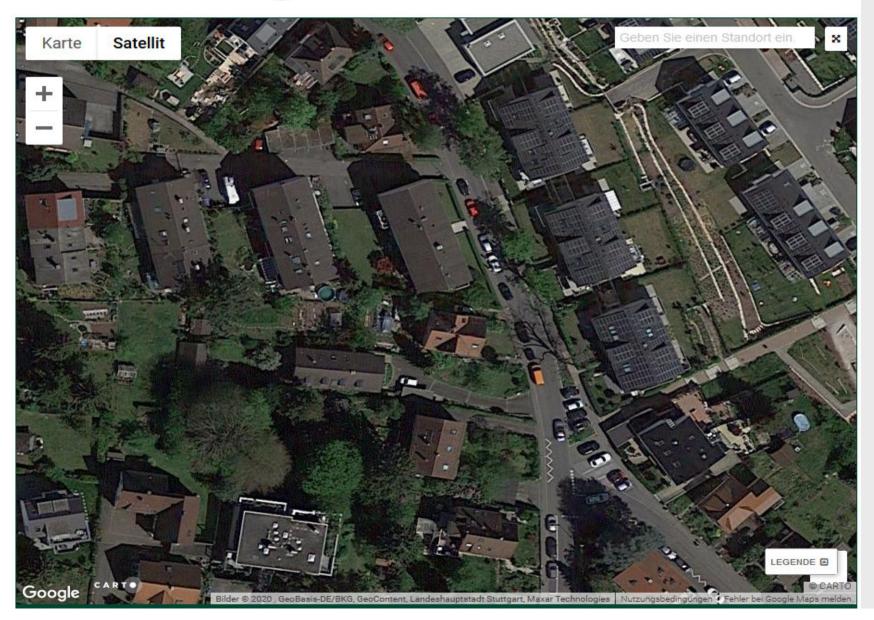
Im gesamten Plangebiet sind bei Hauptgebäuden sowohl mit Satteldächern als auch mit flach geneigten Dächern die Dachflächen gemäß § 9 Abs. 1 Nr. 23 b BauGB zu mind. 50 % mit Solaranlagen zu versehen.

Seit 2006 sind es rund 20 Gebiete, 11 davon Wohngebiete plus aktuell Berg Bürg II, Hoher Rain, ca. 550 + 80 Solaranlagen sind zusätzlich auf Waiblinger Wohngebäuden installiert

Privatrechtliche Sicherung

Baugebiet Bäumlesäcker 2009

Baugebiet Galgenberg 2006



Regelung im Grundstückskaufvertrag

"Der Käufer verpflichtet sich, innerhalb der Frist nach Ziffer 1 auf mind. 50 % der geeigneten Dachfläche des von ihm zur errichtenden Wohngebäudes solarenergetische Anlagen, zur Nutzung von Solarenergie (Wasser und/oder Strom) zu errichten und für die Dauer zu nutzen bzw. nutzen zu lassen. Geeignet sind Dachflächen, die nach Süden bis nach Westen ausgerichtet sind, da die Anlage dort einen größeren Prozentsatz des Energieertrags erbringt.

Voraussetzung: Stadt ist Eigentümerin der Fläche

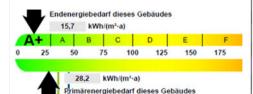
Bestehende Solaranlagen auf Dachflächen

Neuer ganzheitlicher Ansatz

Klimaneutrales Neubaugebiet Berg-Bürg II Waiblingen-Bittenfeld

Musterhaus Doppelhaushälfte (Berechnungsbeispiel)

Beheizte Wohnfläche: 187 m²
Gebäudenutzfläche: 221 m²
Volumen: 690 m³
Hüllfläche: 377 m²
Fensterfläche: 48 m²
Außentürfläche: 2 m²


Heizungsanlage: Luft-Wasser-Wärmepumpe

alternativ Pellet-Anlage.

EnEV -30 % EnEV 2016

PV-Anlage ca. 55 m²

Wärmepumpenstrom ca. 2.900 kWh/a PV-Ertrag ca. 7.700 kWh/a

Das Musterhaus erfüllt die Anforderungen zum KfW-Effizienzhaus 55 und damit klar die energetischen Anforderungen Berg-Bürg II

Jahresprimärenergiebedarf 28,20 kWh/(m²a)

Transmissionswärmeverlust 0,29 W/(m² K)

U-Werte wichtiger Bauteile in W/(m2K)

 Dachfläche:
 0,14

 Außenwand:
 0,21

 Keller-Außenwand:
 0,29

 Keller-Boden:
 0,29

 Fenster:
 0,80

Notwendige Leistung einer PV-Anlage beim dargestellten Musterhaus zur Erzielung der Klimaneutralität: 8 kWp ≙ ca. 55 m²

Hinwei

Im Bereich des Geschosswohnungsbaus wird von den Stadtwerken Waiblingen ein Nahwärmenetz verlegt.

Energetische Beratung

klimaneutrales Baugebiet Berg-Bürg Energieagentur Rems-Murr gGmbH

- zwei kostenlose Beratungen zu je einer Stunde (energetische Vorga Berechnungstool etc.)
- alle weiteren Beratungen 65 €/St

Terminvereinbarung

Energieagentur Rems-Murr gGmbH Gewerbestraße 11 71332 Waiblingen

Tel.: 07151 975173-0 Fax: 07151 975173-19

Excel-Berechnungstool und Info

Alle Bauherren erhalten ein kostenle Rechentool zum Nachweis der ausge Treibhausgas-Emissionsbilanz; hiert zu achten, dass die aktuellste Versie verwendet wird. Die dafür notwendi werden von einem Fachplaner ermit

Stadt Waiblingen Fachbereich Bauen und Umwelt Abteilung Umwelt Kurze Straße 24 71332 Waiblingen

Tel.: 07151 5001-3260/-3261 Fax: 07151 5001-3219 E-Mail: <u>umwelt@waiblingen.de</u>

Internet: https://www.waiblingen.de

Energetische Anforderungen:

Nutzung erneuerbarer Energien Geringer Primärenergiebedarf (Unterschreitung EnEV 2016 um 27 %)

Optimale Dämmung

Geringe Transmissionswärmeverluste (Unterschreitung EnEV 2016 um 30 %)

CO₂-Bilanz gleich Null –Klimaneutralität (bezüglich Wärmeerzeugung und Haushaltsstrombedarf)

Fachbereich Bauen und Umwelt

Klimaneutrales Wohnquartier Berg Bürg

für ein CO₂ -neutrales Neubaugebiet in Walblingen-Hohenacker Im Bereich Rechbergstraße

Energieversorgungskonzepi

Privatrechtliche Absicherung

- •...Die primärenergetische Unterschreitung der Energieeinsparverordnung 2014 (EnEV 2014, Stand 1.1.2016) um mindestens 27 %. (Primärenergie Soll = Primärenergie EnEV 2014, Stand 1.1.2016 minus mindestens 27 %).
- •Die Unterschreitung der maximal zulässigen Transmissionswärmeverluste nach EnEV 2016 um mindestens 30 % (H'T Soll = H'T EnEV 2014, Stand 1.1.2016 minus mindestens 30 %).
- •Nachweis einer ausgeglichenen CO₂-Bilanz in Bezug auf Wärmeerzeugung und durchschnittlichen Strombedarf:

Es muss nachgewiesen werden, dass

- a) die CO₂-Emissionen der Wärmebereitung und
- b) die CO₂-Emissionen des Haushaltsstroms

bilanziell über die CO₂-Gutschrift einer Photovoltaikanlage ausgeglichen werden.

CO2 Einsparung Gebäude

	D7	Eingabe: Objektadresse	G 23	
	D14	Eingabe: Gebäudenutzfläche A _N	281,9	kWh/(m²*a)
Park To		Eingabe: Höchstwert des Jahres-Primärenergiebedarfs Q _{p zul}	49,3	kWh/(m²*a)
/				
		q _E spez. Endenergiebedarf Referenzgebäude	44,8	kWh/(m²*a)
		Q _E Endenergiebedarf Referenz	12.634	kWh/a
	TOHOLI	CO ₂ -Faktor Referenzgebäude	0,246	kg CO2-Äq./kWh
		CO ₂ -Emissionen Referenzgebäude	3.108	kg CO2-Äq./a
		Eingabe: CO ₂ -Emissionen berechnetes Gebäude	2.196	kg CO2-Äq./a
		CO ₂ -Einsparung berechnetes Gebäude ggü Referenzgebäude	912	kg CO2-Äq./a
	D139	Eingabe: Vermiedene CO ₂ -Emissionen Fotovoltaik	5.428	kg CO2-Äq./a
		Gesamte CO ₂ -Einsparung	6,3	t CO2-Äq./a

Fachbereich Bauen und Umwelt

Angaben für die Fotovoltaik

Auswahl: Angabe der Fotovoltaik	Generatorleistung in kW-peak		Awwahl: Madultyp	Aurwahl: Noigung	Awwahl: Awrichtung	Ertragrmindor unq Vorschattuna	
Eingabe: Leistung PV-Generator 1	9,40	kWp	1 manakrirtalin	201	90	0%	
Eingabe: Leistung PV-Generator 2		kWp	1 manakristalin			0%	
Eingabe: Leistung PV-Generator 3		kWp	1 manakristalin			0%	
Eingabe: Leistung PV-Generator 4		kWp	1 manakristalin			0%	
Eingabe: Leistung PV-Generator 5		kWp	1 manakristalin			0%	
Eingabe: Leistung PV-Generator 6		kWp	1 manakristalin			0%	
Eingabe: Leistung PV-Generator 7		kWp	1 manakristalin			0%	
Eingabe: Leistung PV-Generator 8		kWp	1 manakristalin			0%	
Eingabe: Leistung PV-Generator 9		kWp	1 manakristalin			0%	
Eingabe: Leistung PV-Generator 10		kWp	1 manakristalin			0%	
Ausgabe: PV-Ertrag	7.990	kWh/a					

Ergebnisse (Emissionsfaktoren Stand 3.1.2019)

Ausgabe: CO₂-Emissionen Gebäude	1.835	kg _{coz-ğą,} /a				 		
Ausgabe: CO₂-Emissionen Haushaltsstrom	2.485	kg _{coz-šą,} /a			5.082		kWh/a	
Ausgabe: Vermiedene CO₂-Emissionen Fotovoltaik	4.906	kg _{coz-ĕq.} /a			7.990		kWh/a	
Ausgabe: CO₂-Bilanz	586	kg _{coz-šą,} /a	Positiver Wert = Ausgleich erreicht. Negativer Wert = Ausgleich nicht erreicht.					
Ausgabe: Notwendiger zusätzlicher PV-Ertrag	nicht erforderlich	kWh/a	Auruahl: Madultyp	Awwahl: Noigung	Awwahl: Awrichtung	 		
Ausgabe: Notwendige zusätzliche PV-Leistung	nicht erforderlich	kW _P	1manakristalin	301	0			
Ausgabe: Notwendige zusätzliche PV-Fläche	nicht erforderlich	m³				 		

Fazit

wenn A = W
dann ☺
Bis dahin gilt
A ≠ W

(3)

Danke

A=Anspruch
W=Wirklichkeit